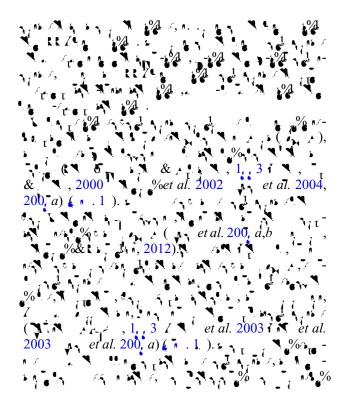
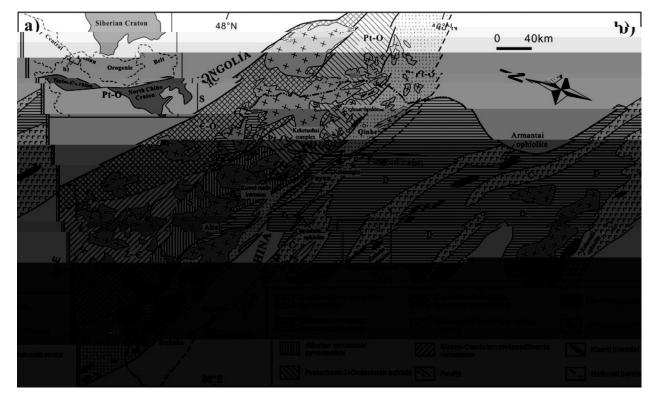

Geol. Mag. 154 (3), 2017, pp. 419–440. Cambridge University Press 2016 1 10.101 & 0016 56 16000042

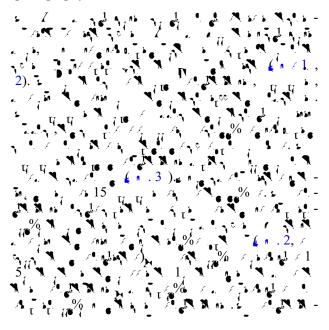


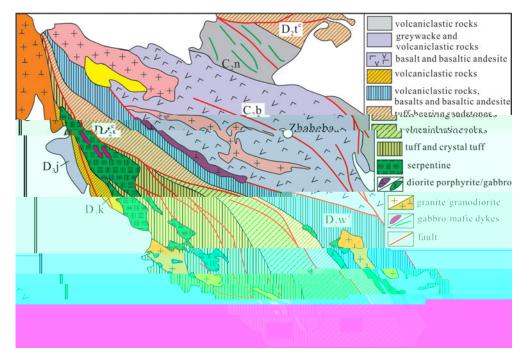

1. Intro uct on



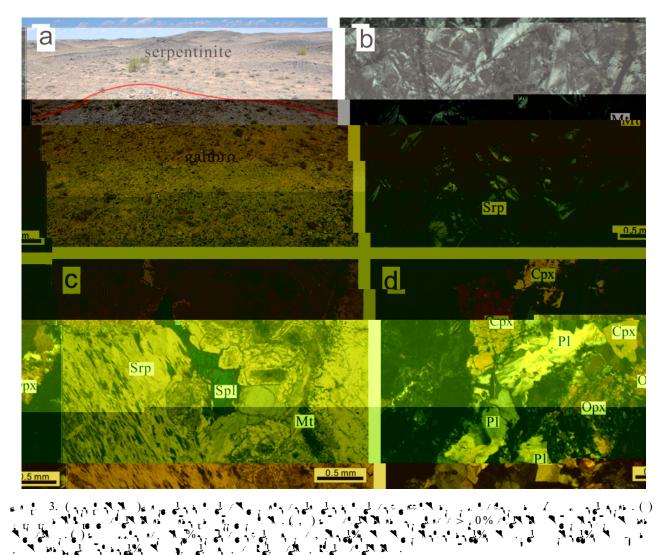
\* 1.6, 1. (N. \* . \* 1.6, 1. 1.6)

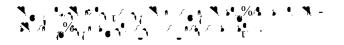






 $\begin{array}{c} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{x} & \mathbf{y} & \mathbf{z} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf$ 

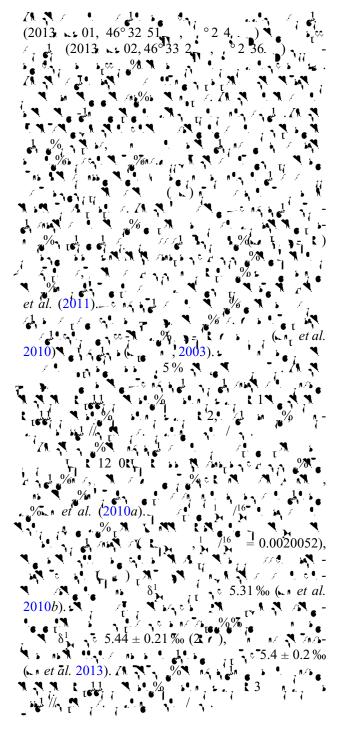



2. Reg onal geology, fiel observat ons an petrography



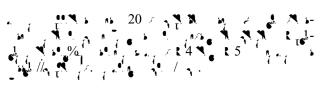

0% r r 16 >3 et al. 2013 %. **^**• (40 0%) (30 50 %) 1 %) ť et al 1  $I_{I}$ 1 ₩7. **№** ( 2.4 7 12 3). • 5 ^ r\_-^ 1 5



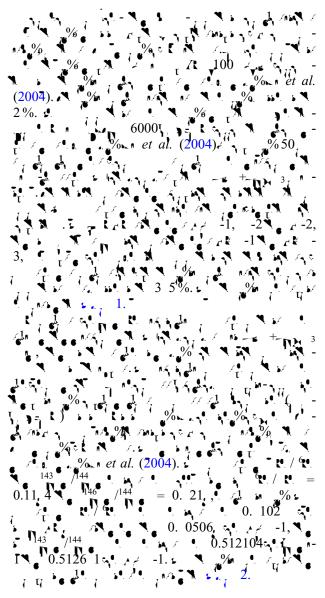

 $\begin{array}{c} \mathbf{x} & \mathbf{y} \\ \mathbf{x} \\ \mathbf$ 





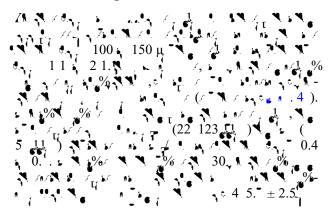

### 3. Analyt cal proce ures

3.a. Z rcon U-Pb at ng an Hf-O sotope analys s




3.b. M neral analys s






3.c. Whole-rock analys s



# 4. Analyt cal results

## 4.a. Z rcon U–Pb ages



| 2013:: 01-1<br>K y | 2013 L: 01-3                        | 20132 01-4<br>K )                                   | 2013: L: 01-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2013: L: 01-6                                                                                               | 2013:: 01-                                            | 2013 LC 01-                                           | 2013 L 01 1                                           | 2013 LE 01 2                                          | 2013 L 01 4                                           |
|--------------------|-------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                    |                                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Major elements                                                                                              | (%)                                                   |                                                       |                                                       |                                                       |                                                       |
| 3.0                | 4.20                                | 3, .41                                              | 3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3, .22                                                                                                      | 3, . 2                                                | 3, .05                                                | 4.22                                                  | 46.4                                                  | 51.2                                                  |
| 0.05               | 0.20                                | 0.05                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04                                                                                                        | 0.05                                                  | 0.04                                                  | 0.14                                                  | 0.12                                                  | 0.2                                                   |
| 0.61               | 1., 6                               | 1.04                                                | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0., 0                                                                                                       | 0.4                                                   | 0., 0                                                 | 1.2                                                   | 1, .64                                                | 1, .33                                                |
| .44                | 4.6                                 |                                                     | , .36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .5                                                                                                          | .16                                                   | . 4                                                   | 3.6                                                   | 3.24                                                  | 3. ,                                                  |
| 0.0                | 0.10                                | 0.11                                                | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11                                                                                                        | 0.0,                                                  | 0.11                                                  | 0.0                                                   | 0.0                                                   | 0.0                                                   |
| 3.21               | 24.5,                               | 3.2                                                 | 3.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3, .0,                                                                                                      | 3, .31                                                | 3.44                                                  | 10.04                                                 | 03                                                    | 5. ,                                                  |
|                    | 3 . 0<br>0.05<br>0.61<br>.44<br>0.0 | 3 0 4 .20   0.05 0.20 0.61 1., 6   .44 4.6 0.0 0.10 | Image: Constraint of the system Image: Constand of the system Image: Constando | t t t t   3.0 4.20 3.41 3.62   0.05 0.20 0.05 0.05   0.61 1.6 1.04 0.6   .44 4.6 . .36   0.0 0.10 0.11 0.11 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

so ton in the way goe was not and the ready in the second states of the

| 5.1 | 1. N. T. F |  |
|-----|------------|--|
|     |            |  |

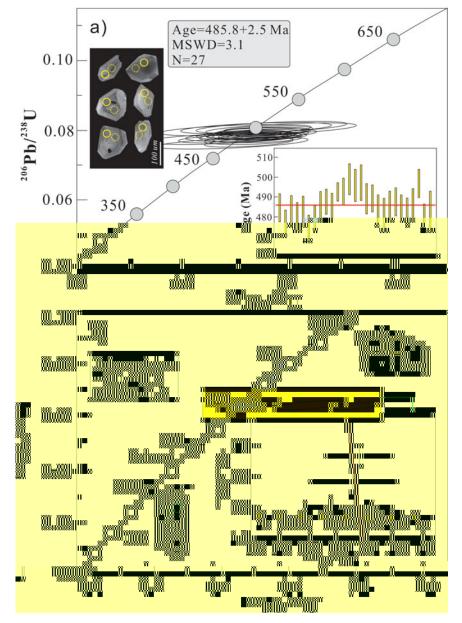
|                | 2013 01-1               | 2013 01-3            | 20132 .: 01-4             | 2013 01-5     | 2013 01-6          | 2013 01-          | 2013 01-    | 2013 01 1                     | 2013 01 2         | 2013 L: 01 4         |
|----------------|-------------------------|----------------------|---------------------------|---------------|--------------------|-------------------|-------------|-------------------------------|-------------------|----------------------|
| 5              | 0.005                   | 0.064                | 0.00                      | 0.005         | 0.00.              | 0.003             | 0.003       | 0.051                         | 0.044             | 0.222                |
|                | 0.021                   | 0.34                 | 0.044                     | 0.042         | 0.0 2              | 0.031             | 0.033       | 0.310                         | 0.25              | 1.450                |
| <u>}</u>       | 0.004                   | 0.04                 | 0.00                      | 0.00          | 0.011              | 0.005             | 0.005       | 0.04,                         | 0.043             | 0.21,                |
| \$             | 0.011                   | 0.232                | 0.036                     | 0.044         | 0.012              | 0.034             | 0.00        | 0.123                         | 0.0, 0            | 03                   |
| 5              | 0.0, 0                  | 0.036                | 0.03                      | 0.03          | 0.06               | 0.026             | 0.025       | 0.046                         | 0.031             | 0.06                 |
|                | 0.26                    | 1.10                 | 6.600                     | 1. 0          | 0., , 3            | 0.233             | 1.150       | 1.5 0                         | 0.516             | 0.1, 5               |
| <b>X</b> .     | 0.406                   | 0.0, 2               | 0.12                      | 0.112         | 0.0,               | 0.1, ,            | 0.054       | 0.16                          | 0.1, 1            | 0.6, 5               |
| 5              | 0.046                   | 0.034                | 0.014                     | 0.02          | 0.050              | 0.030             | 0.010       | 0.050                         | 0.02,             | 0.130                |
| 7              | 0.1, 1                  | 0.144                | 0.203                     | 0.364         | 0.042              | 0.0, 4            | 0.0         | 0.066                         | 0.042             | 0.0 3                |
| 1. 1           | 2013 01 5               | 2013 01 6            | 2013 01                   | 2013 01       | 2013 01<br>A (c 1) | 2013 . 03 2       | 2013 03 3   | 2013 . 03 4                   | 2013 . 03 5       | 2013 01 3            |
| -              | ſ                       | <b>L</b> '           | r (r 1)                   | A (r 1)       | · (r 1)            | r (r 1)           | r (r 1)     | r (r 1)                       | r (r 1)           | r (r 2)              |
| -              |                         |                      |                           |               | Major elements (   |                   |             |                               |                   |                      |
| 2<br>2         | 4, .1                   | 45.                  | 4                         | 53.1          | 51., 1             | 50.40             | 50.54       | 50.52                         | 51.22             | 52.3                 |
| <b>1</b> 2     | 0.34                    | 0.15                 | 1.40                      | 1.24          | 1.31               | 1. 0              | 1.63        | 1.31                          | 1.1               | 0.33                 |
|                | 1<br>4.52               | 1, .5                | 16.5                      | 16.1          | 15., 3             | 15.               | 16. 6       | 15.55                         | 15.4              | 1, .61               |
| <b>1 2</b> 3   | 4.52                    | 3.34                 | . •                       | .11           | .43                | .0,               | .50         | .42                           | . 2               | 3.44                 |
| -15            | 0.0                     | 0.0                  | 0.11                      | 0.10          | 0.11               | 0.13              | 0.11        | 0.14                          | 0.12              | 0.0                  |
| 1.2            | 6.                      | .42                  | 4. 0                      | 4.2           | 4.41               | 5.<br>6. <b>5</b> | 3.2         | 6.06                          | .14               | 4.                   |
| 2              | 11.03                   | 12.61                | 6.22                      | 5.5           | 6.3,               |                   | 4.52        | .4                            | .26               | 11                   |
| n B            | 4. 6                    | .3                   | . 2                       | .3,<br>0.31   | .00                | 4.52              | .31         | 4. 0                          | 4.0               |                      |
|                | 0.13                    | 0.11                 | 0.3,                      | 0.31          | 0.42               | 2.04              | 0.33        | 1.2                           | 2.03              | 0.1                  |
| 2 5            | 0.04                    | 0.02                 | 0.62                      | 0.62          | 0.65               | 0.4               | 0.6,        | 0.4                           | 0.44              | 0.04                 |
| <u>Þ</u> . 1   | 3. 2                    | 3.26                 | 4.24                      | 2.54          | 2., 3<br>          | 2.2               | 5.14        | 2.65                          | 1.3               | 2.                   |
| 54 F           | <b>;;</b> . 5           | ··· <sup>2</sup> .4, | • • • 6<br>• • 11<br>• 55 | <b>**</b> . 0 | ····.4             | ····.40           | <b>**</b> 1 | ··· <sup>6</sup>              | .6                | ••. <sup>1</sup> .2, |
| • 1            | 4.5                     | .4,                  | <b>1</b>                  | . 0           | .42                | 6.56              | ••.64       | 6.0                           | 6.11              | .2,                  |
| י <sup>#</sup> | 2                       | 1                    | 22                        | 54            | 54                 | 56                | 41          | 56                            | 64                | 4                    |
|                | 0                       | 4 5                  | 1.16                      | 1.10          | Trace elements (p  |                   | 10.4        | 5.0                           | <i>(</i> <b>)</b> | 5 1                  |
| <b>b_</b> ∩    | 0.22,                   | 4., 5                | 1.16                      | 1.12          | 1.4                | .0                | 40.4        | 5.2,<br>1.100                 | 6. 2              | 5. 1                 |
| 4              | 25.0                    | 0.135                | 1.2 4                     | 1.6 3         | 1.316              | 1., 53<br>.5      | 1.034       |                               | 0.5 5             | 0.62,                |
| L<br>T         |                         | 23.                  | 1.6                       | 1.5           | 1.5                |                   | 1, .2       | 25.2                          | 1 7               | 10                   |
| <b>`</b> .     | 11<br>34.               | 3.<br>163            | 1 6<br>60.5               | 166<br>62.6   | 1 2<br>64.1        | 22<br>116         | 22,         | 254                           | 1<br>203          | 5.<br>23.            |
|                |                         |                      |                           |               |                    |                   | 1           | <b>5</b> <sup>0.</sup><br>2.0 |                   |                      |
| 12             | 24.2                    | 21.6<br>1 5          | 26.,<br>63.6              | 23.6<br>50.   | 24.6<br>51.4       | 2 .<br>6.         | 2.3         | 2 .0<br>5 .3                  | 2 .0<br>132       | 16.4<br>1.1          |
| Γ "            | <b>،</b> <sup>4</sup> . | 1.5                  | 05.0                      | 50.           | 31.4               | 0.                | ۷.          | 5.5                           | 132               | 1.1                  |

| 5 | 1. | 1 | 8 | т |   |
|---|----|---|---|---|---|
| 4 | 1  |   |   | ι | • |

| / , 🛃 | 2013 01 5  | 2013 01 6  | 2013 01 | 2013 01 | 2013 01 .         | 2013 . 03 2            | 2013 . 03 3            | 2013 . 03 4 | 2013 . 03 5 | 2013 01 3              |
|-------|------------|------------|---------|---------|-------------------|------------------------|------------------------|-------------|-------------|------------------------|
|       | <b>L</b> ' | <b>L</b> ' | r (r 1) | A (r 1) | _ ( <u>r</u> 1) • | <u>~</u> ( <u>r</u> 1) | <u>~</u> ( <u>r</u> 1) | r (r 1)     | r (r 1)     | <u>~</u> ( <u>~</u> 2) |
| ь.    | 3.         | 1.20       | 3, .60  | 46. 0   | 4 .30             | 23.40                  | 43.00                  | 25.20       | 32., 0      | 6.56                   |

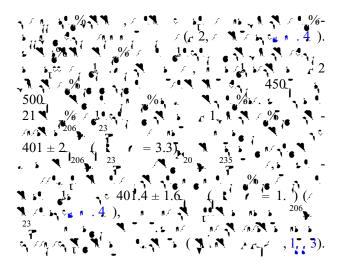
| 5.1 | 1. N. T. |  |
|-----|----------|--|
|-----|----------|--|

|                | <u>*</u> ( <u>r</u> 2) | (                      | 2013 02 2              | 2013 . 03 1        | 2013 . 03 6    | 2013 . 01 10           | 04/06           | 04/24                  | 04/2,               | 0371                                    |
|----------------|------------------------|------------------------|------------------------|--------------------|----------------|------------------------|-----------------|------------------------|---------------------|-----------------------------------------|
|                |                        | <u>~</u> ( <u>r</u> 2) | <u>~</u> ( <u>~</u> 2) | <u>    (    1)</u> | <u>^ (r 1)</u> | <u>~</u> ( <u>r</u> 2) | A (r 1)         | <u>~</u> ( <u>r</u> 1) | . ( <sub>ℓ</sub> 1) | A (c 1)                                 |
|                |                        | 24                     | 10.1                   | Trace elem         |                |                        | ,               | ,                      | ,                   | ,                                       |
| ▶ A            | 1, .4                  | 36.,                   | 42.4                   | 26.0               | 32.4           |                        | /               | /                      | 1                   | /                                       |
| <u>^</u>       | 0.3, 5                 | 0.153                  | 0.35                   | 1.1,               | 0., 4          | 0.46                   | 12.4            | 20 5                   | 1                   | 20.2                                    |
| L L            | 32.5                   | 33.2                   | 34.5                   | 25.1               | 26.3           | 32.1                   | 13.4            | 20.5                   | 1.                  | 20.3                                    |
|                | 1, 4                   | 203                    | 21                     | 33                 | 341            | 1,5                    | 144             | 1 4                    | 214                 | 265                                     |
| , · ·          | 56.5                   | 44.2                   | 4.                     | 1, .               | 22.2           | 53.                    | 15              | 162                    | 214                 | 265                                     |
|                | 34.                    | 3.5                    | 3.3                    | 23.1               | 24.            | 33.                    | 20.6            | 30.                    | 2                   | 20.2                                    |
| n' '           | 66.4                   | 4.6                    | 6.4                    | 25.4               | 2.1            | 66.6                   | •. <sup>1</sup> | 114                    | 5.5                 | .02                                     |
| τ              | 6.4                    | 236.4                  | 256.                   | 205.4              | 20             | 114.20                 | /               | /                      | /                   | /                                       |
| 7              | 4.0                    | 44.1                   | 4, .0                  | 4.<br>14.          | 103            | 44.1                   | /               | /                      | /                   | /                                       |
| ſ              | 12.0                   | 11.1                   | 11.2                   |                    | 13.6           | 12.0                   | /               | , , ,                  | /                   | , , , , , , , , , , , , , , , , , , , , |
|                | 0.5                    | 1.420                  | 1.0 0                  | 3.130              | 3.2 0          | 0.5 3                  | 4.              | 1 .1                   | 22.0                | 1.2                                     |
| Ľ.             | <b>1</b>               | 1 50                   | 13.2                   | 2 0                | 24,            | 6 6                    | <b>1</b>        | 31                     | 111                 | 6                                       |
| <u>}</u>       | 13.0                   | 13.0                   |                        | 21.1               | 22             | 12.5                   | 13.2            | 13.2                   | 14.                 | 20.1                                    |
| 7.             | 54.                    | 42.3                   | 41.5                   | 144                | 154            | 52.                    | 243             | 133                    | 164                 | 151                                     |
| Π."            | 1.2,                   | 0. 4                   | 0. 55                  | 11.315             | 11., 5         | 1.25                   | 20.2            | 12.                    | 21                  | 12.2                                    |
|                | 0.025                  | 0.030                  | 0.02                   | 0.051              | 0.052          | 0.02                   | /               | /                      | /                   | /                                       |
| 8              | 0.3 1                  | 0.2 6                  | 0.32                   | 1.560              | 1.450          | 0.360                  | 1               | /                      | /                   | /                                       |
| 1              | 0.2                    | 1. 20                  | 1.030                  | 0.365              | 0.406          | 0.336                  | /               | /                      | /                   | /                                       |
| <u>'</u>       | 11                     | 3 2                    | 346                    | 25                 | 50             | 4.3                    | 20 6            | /                      | /                   |                                         |
| b              | 10. 0                  | . 40                   | .610                   | 26.40              | 26. 0          | 10.50                  | 30.6            | 32.2                   | 40.1                | 26.4                                    |
| <b>h</b> -     | 23.00                  | 1, 0                   | 1 .40                  | 51.50              | 54. 0          | 22.30                  | 5.              | 62.<br>. 4             | 2.3                 | 52.5                                    |
| ¥-             | 2. 0                   | 2.520                  | 2.510                  | 5. 50              | 6.1 0          | 2.6 0                  | 6.              | . 4                    | 10.5                | 6.4                                     |
| Π.•            | 11. 0                  | 11. 0                  | 11.60                  | 22.30              | 24.30          | 11.60                  | 2.5             | 31.2                   | 43.1                | 24.4                                    |
| Υ <sub>1</sub> | 2.540                  | 2. 00                  | 2.6, 0<br>0., 0        | 4.4, 0             | 4. 00          | 2.3 0                  | 4.5             | 5.2                    | 6.                  | 4.5                                     |
| "DT            | 0. 6                   | 0., 1                  |                        | 1.163              | 1.25           | 0. 3                   | 1.45            | 1.5                    | 2.0                 | 1.03                                    |
| r.             | 2.4 0                  | 2. 13                  | 2. 54                  | 4.14,              | 4.46,          | 2.522                  | 3.56            | 4.01                   | 5.35                | 4.23                                    |
| <b>5.</b>      | 0.3, 6                 | 0.3                    | 0.3,                   | 0.612              | 0.660          | 0.3 4                  | 0.4             | 0.54                   | 0.64                | 0.63                                    |
| <b>6</b> %     | $2.1^{\circ}0$         | 2.150                  | 2.220                  | 3.420              | 3.6 0          | 2.130                  | 2.5             | 2.                     | 3.24                | 3. 5                                    |
| -1             | 0.46                   | 0.446                  | 0.444                  | 0.2                | 0. 5,          | 0.46                   | 0.4             | 0.52                   | 0.5                 | 0.                                      |
|                | 1.350                  | 1.230                  | 1.240                  | 2.120              | 2.2, 0<br>0.32 | 1.310                  | 1.32            | 1.3                    | 1.45                | 2.25                                    |
| s,             | 0.1, 0                 | 0.16,                  | 0.1 5                  | 0.304              |                | 0.1, 4<br>1.210        | 0.1,            | 0.2                    | 0.2                 | 0.34                                    |
| y              | 1.210                  | 1.050                  | 1.120                  | 1.,60              | 2.110          |                        | 1.25            | 1.23                   | 1.24                | 2.13                                    |
| ĥτ             | 0.1 4                  | 0.164                  | 0.165                  | 0.2, 1             | 0.323          | 0.1 3                  | 0.20            | 0.1                    | 0.1                 | 0.34                                    |
| 5              | 1.3, 0                 | 0.41                   | 1.040                  | 3.2, 0             | 3.510          | 1.460                  | 5.3             | 3.2                    | 4.16                | 3. 2                                    |
| 5              | 0.0 4                  | 0.062                  | 0.051                  | 0.5                | 0.644          | 0.0                    | 1.35            | 0.6                    | 1.16                | 0.6                                     |
|                | 0.151                  | 2.0,                   | 1.50                   | 2. 5               | 1.             | 0.33                   | / 12            | /                      | / 1                 | 21 05                                   |
| <b>)</b> .     | 0.3, 4                 | 0.206                  | 0.200                  | 45.20              | 35.10          | 0.41                   | .13             | .0                     | 4.1                 | 21.06                                   |
| د<br>-         | 1., 0                  | 0. 61                  | 0. 1                   | . 60               |                | 1., 0                  | 4.50            | 2.63                   | 3.20                | <b>5</b> .41                            |
| 7              | 0.500                  | 0.304                  | 0.302                  | 2. 30              | 3.4 0          | 0.501                  | 1. <b>,</b>     | 0.6                    | 1.46                | 2.5,                                    |


1 = 04706, 04726, 0472, 0471 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471, 1 = 0471,

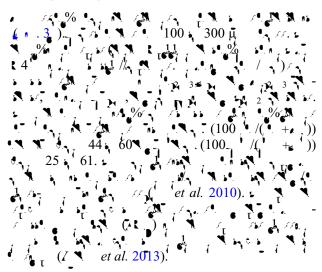
بے۔ بر) مارد ( <sub>-1-</sub> ب

~

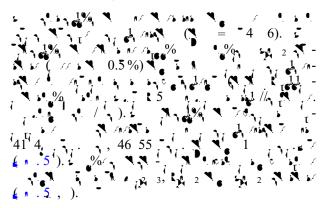

| · · · · · · · · · · · · · · · · · · · | 17 6 115 | 48 <u>.</u> . | 1 wont | • <i>I</i> | _ ^ • |
|---------------------------------------|----------|---------------|--------|------------|-------|
|---------------------------------------|----------|---------------|--------|------------|-------|

| t <u>i</u> si |                            | -<br>( <u>11</u> ) | ( <u>11</u> ) | /<br>ور | <b>៥</b> . /<br><sup>6</sup> ۳. (1σ) | (_ ťª. /<br>, | t<br>(11<br>557 |      | <sup>14</sup> ℓ /<br><sup>144</sup> ἰ<br>Γ ● | $\Gamma^{143} (1\sigma)$ |          | $\tilde{t}$ |
|---------------|----------------------------|--------------------|---------------|---------|--------------------------------------|---------------|-----------------|------|----------------------------------------------|--------------------------|----------|-------------|
| 2013 01 3     | A A (c 2)                  | 0.36               | 3, 2          | 0.002   | 0. 04030(2, )                        | 0. 04015      | 2.4,            | 10.  | 0.13, 4                                      | 0.512 3, (40)            | 0.5124 4 | 6.,         |
| 2013 01 10    | $A \neq \frac{1}{2} (c 2)$ | 0.5                | 6 <b>°</b> 6  | 0.0024  | 0. 04 5, (23)                        | 0. 04 45      | 2.3             | 11.6 | 0.1235                                       | 0.512 0, (43)            | 0.5124 6 | .1          |
| 2013 . 03 1   | A 1 (c 1)                  | 3.13               | 2 0           | 0.0335  | 0.06324(20)                          | 0. 06133      | 4.4,            | 22.3 | 0.121                                        | 0.512533(4)              | 0.512214 | 1.          |
| 2013 . 03 2   | A 1 (c 1)                  | 2.                 | 1320          | 0.0063  | 0. 042 , (20)                        | 0. 04255      | 4. <b>, *</b> 5 | 2.6  | 0.1046                                       | 0.512 1, (51)            | 0.512445 | 6.3         |
| 2013 . 03 3   | A 1 (c 1)                  | .06                | 516           | 0.0452  | 0. 0536 (43)                         | 0. 05111      | 5.,             | 36., | 0.0,                                         | $0.512 0^{\circ} (30)$   | 0.512450 | 6.4         |
| 2013 . 03 4   | . ∧ / s (c 1)              | .65                | 14 0          | 0.01    | 0. 0422 (51)                         | 0. 04120      | 4.55            | 24.5 | 0.1 <b>°</b> 123                             | 0.512 03(53)             | 0.51250  | .5          |




 $= \frac{4}{\pi} \left( \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right) = \frac{1}{10} \left( \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} + \frac{1}{10} \right)$ 

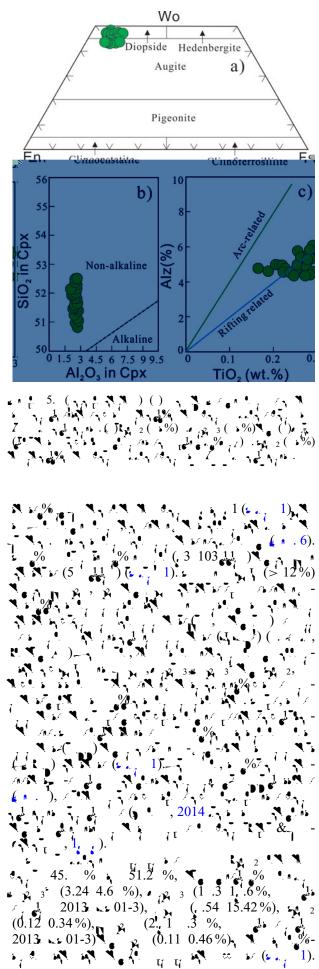




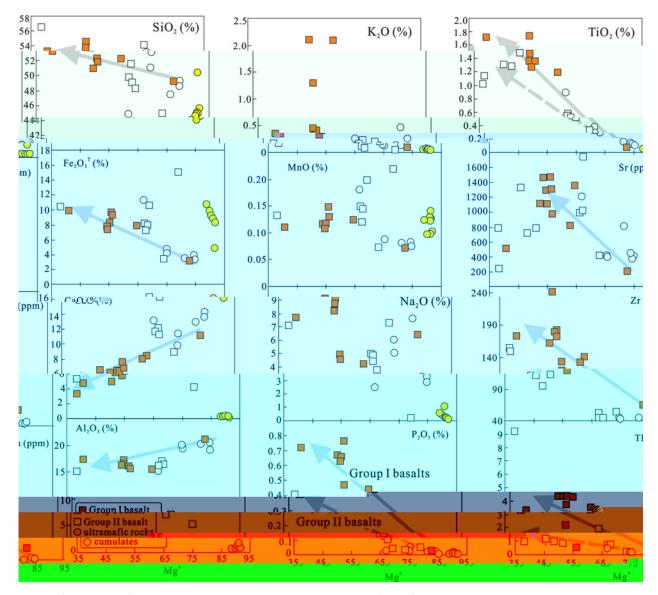

4.b. M neral compos t ons

4.b.1. Spinel composition

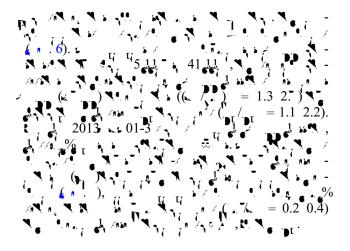



4.b.2. Pyroxene compositions

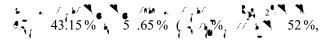


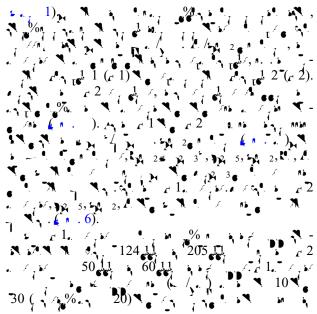

# 4.c. Whole-rock elemental geochem stry

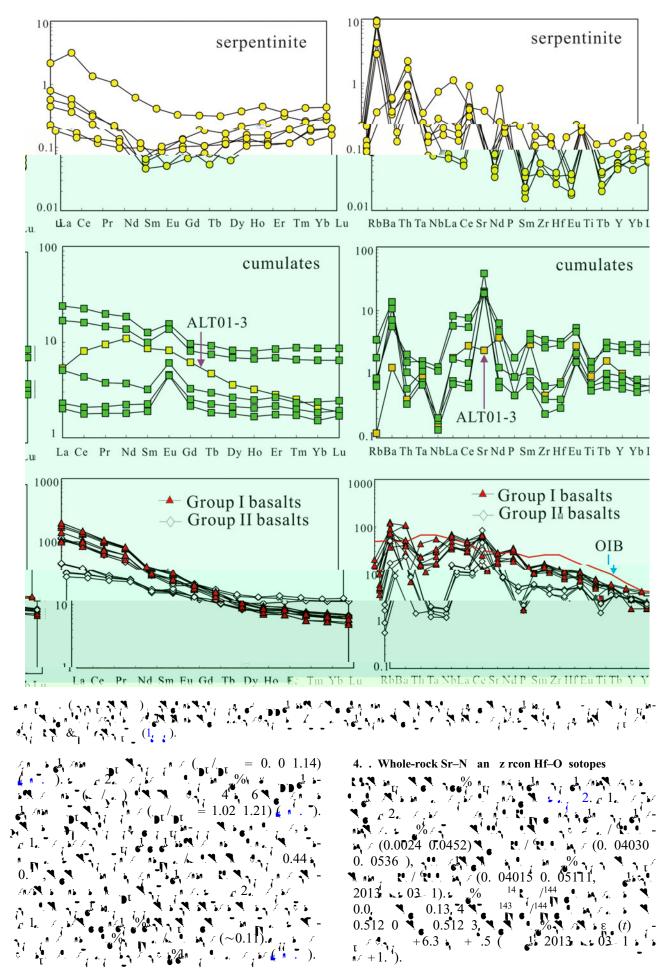
4.c.1. Serpentinites and cumulates

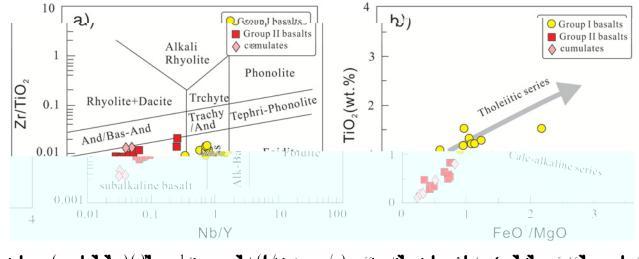

•\_% Æ.  $\begin{array}{c} (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\ (1,2,7,6) \\$ %

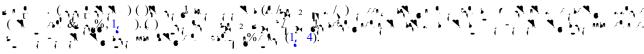


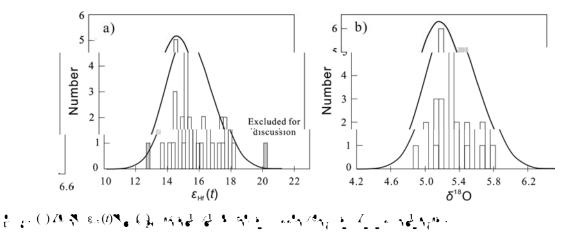

ų ų





 $\begin{array}{c} \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \\ \mathbf{f} \end{array}$ 

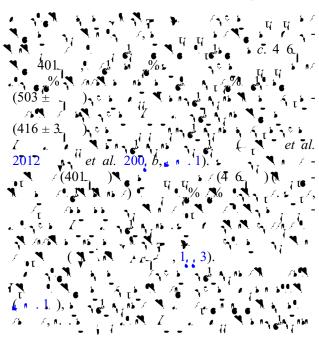


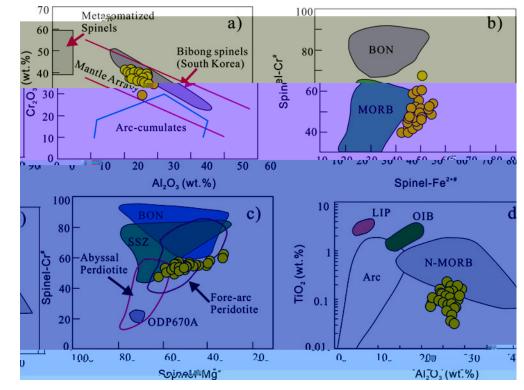


4.c.2. Basalts





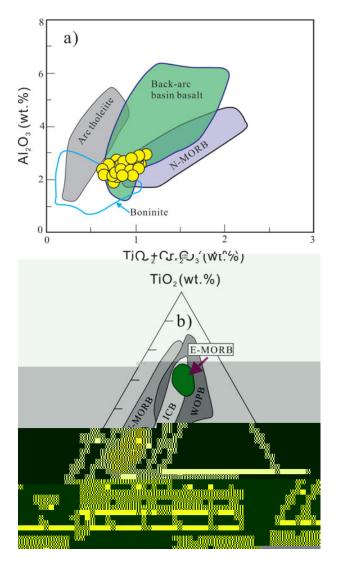


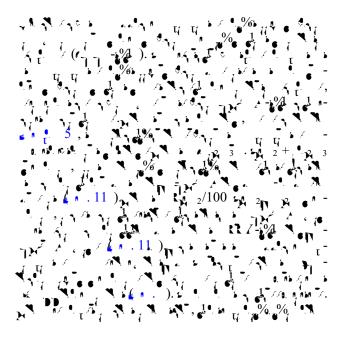



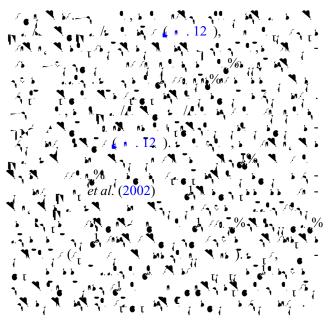






5. D scuss on

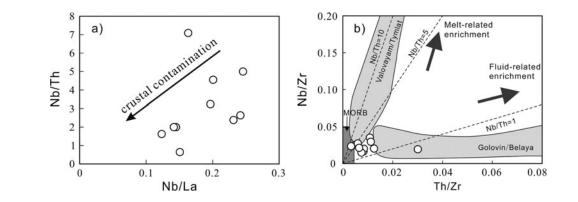

5.a. The n v ual members of the Zhaheba oph ol te

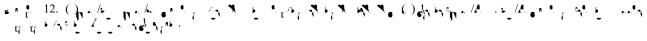


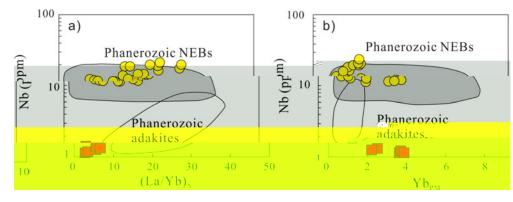




5.b. Or g n of the serpent n te an cumulates





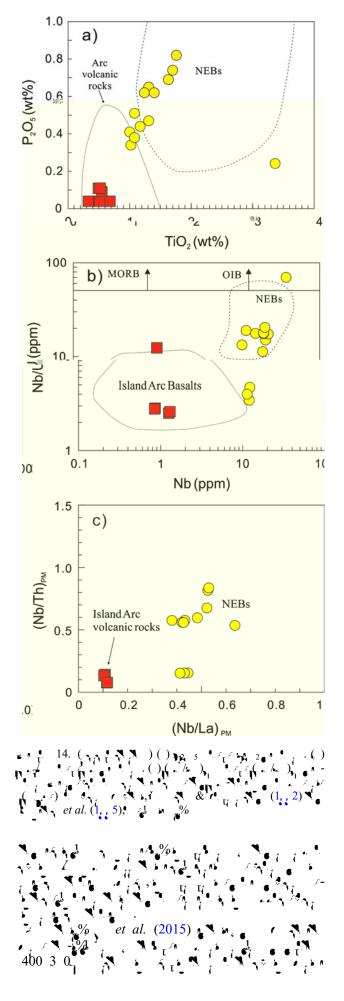

5.c. Petrogenes s of the Devon an basalts

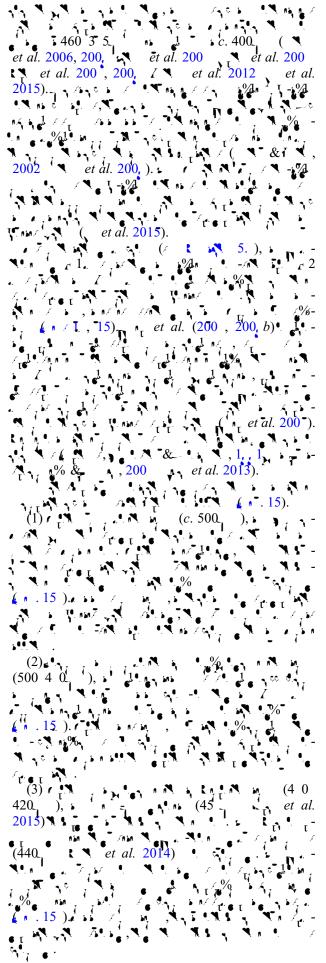
et al. **'2011**) / 🔁 50 04120 0. (0. (+1. %● .5). 5 20.4) (3 5**Г** 2.5 6 % t al. 2000 r et al. et al & (200 ) Ŋ 5

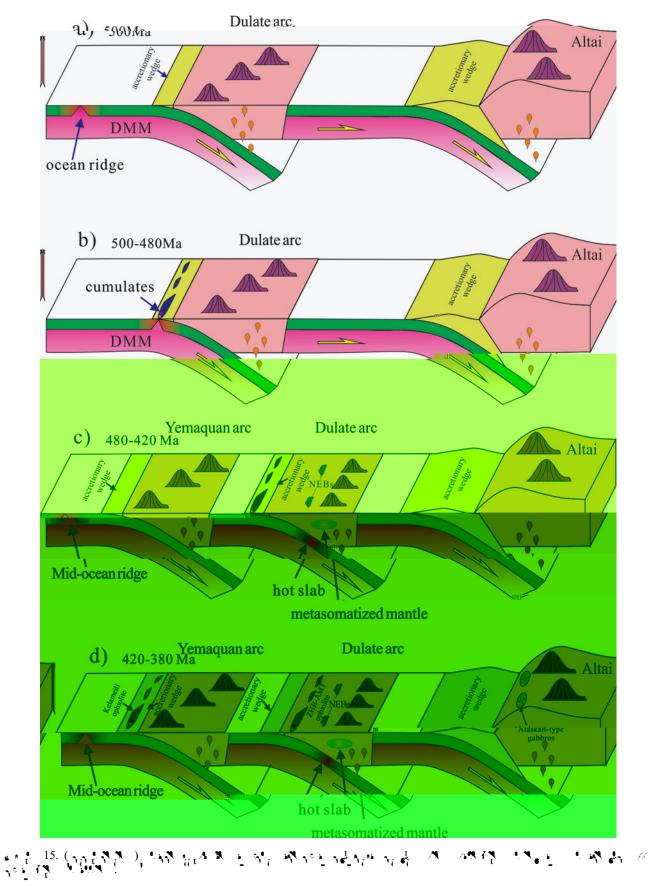


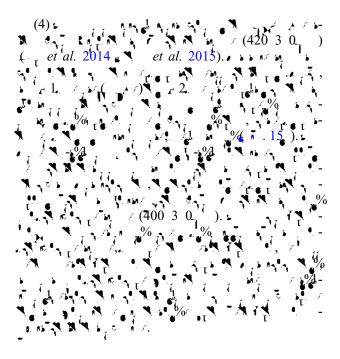




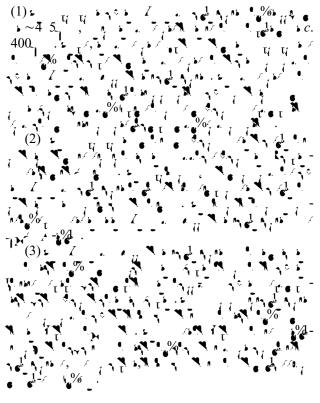

 $= \frac{13}{1} \left( \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right) \left( \frac{1}{1} + \frac{1}{$ 


 $\begin{array}{c} \left( t \right) \left( 1, \ldots, 5 \right) \\ \left( t, 1, 2, 3 \right) \\ \left( t, 2, 3, 3 \right) \\ \left( t, 3, 3$ 





5. . Impl cat ons for the Palaeozo c accret on process n eastern Junggar

n 6n sA. '(416 *et al.* 2014 et al. 2015). (503 N's N A 100% T N 45. et al. 2003 ⊾ *et al.* 2015 Ê (400\_ 6 1% 2014), • et al. ₺⁄₀ et al. 200 200, a,b et al. **M** 5 a). 55 ิกส**้จุ** ช้า Ţ Ĵ et al. 200, b).










## 6. Conclus ons



Acknowle gements. τ<sup>s</sup> 1 5 4 . 5 K. -- \$ 14 2011 ~ 06 03-01). ¥. 

## Supplementary mater al

10.101 x 0016 56 16000042.

### References

- %

- $\frac{1}{2002}$
- 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10. 30, 0 10.
- A. Geological Magazine 139, 1 13.
- Geological Society of America Bulletin 105, 15 3.
- Geological Society of America Bulletin 105, 15 3 . , 220 11. , 220 11. ,  $1 \cdot \& \lor$ ,  $2 \cdot 1 \cdot 1$ ,  $3 1 \cdot 1$ ,  $4 \cdot 1 \cdot 1$ ,  $5 \cdot 1 \cdot 1$ ,  $2 \cdot 1 \cdot 1$ ,  $3 1 \cdot 1$ ,  $4 \cdot 1 \cdot 1$ ,  $4 \cdot 1 \cdot 1$ ,  $5 \cdot 1 \cdot 1$ ,  $4 \cdot 1 \cdot 1$ ,  $4 \cdot 1 \cdot 1$ ,  $5 \cdot 1 \cdot 1$ ,  $4 \cdot 1$
- $\begin{array}{c} \text{(1)} \\ \text{(2)} \\ \text{(2)} \\ \text{(3)} \\ \text{(4)} \\ \text{(2)} \\ \text{(5)} \\ \text{(2)} \\ \text{(5)} \\ \text{(2)} \\ \text{(2)} \\ \text{(2)} \\ \text{(3)} \\ \text{(3)$
- . **A** 5).
- $I, \ldots \& I = 5$  . 2000.  $I, \ldots \& I = 5$  . 2000. I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I = 1 . I =2 3 5.
- r . Lithos 27, 25,

- Geological Bulletin of China 30, 150 13

- 22 35.
- Journal of Geophysical Research: Solid Earth (1978–2012) 101, 11 31 .
- Letin of China **31**, 126 . A 5).
- sion) **59**, 2213 22.
- Transactions of the Royal Society of
- Edinburgh: Earth Sciences 91, 1, 1, 3.
- $\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & &$ . A 5).
  - 1. 2001. A % 2 June 4 2
  - Nature 380, 23 40.
- 2000-2000- *physics* 326, 255' 5'.

- 1, 2004.
- 464 54.

- Geochronological Toolkit for Microsoft Excel.
- $Z_{1}$ ,  $Z_{2}$ ,  $Z_{3}$ , Z
- **274**, 32 355.

- 2/4, 32 353. ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 32, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533.) ( 7, 33, 533
- A cla Pet-rologica Sinica 25, 16 24
- A i). & j, 200, b. ( ), 200, b
- Acta Petrologica Sinica 25, 14 4 1 (  $40^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ , 200.  $40^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/3}$ ,  $4^{1/$

- Sciences 30, 666, 5. . Elements 10, 101 . Mineralogy and Petrology 141, 36 52. Mineralogy and Ferrology 171, 50 52. Journal of Petrology 37, 6, 3 26. . Precambrian Research 231, 301 24.
- *J*. 1. 1. 1. *J*. *Philosophical Transactions of the Royal* Society of London **335**, 3 2.

- Society of London 335, 3 2.
- 40, 3-1 3-3
- $\frac{1}{200} = \frac{1}{200} = \frac{1}$

- Sciences 52, 1345 5.

- Control of the contro

- Geology 20, 325 43.  $L_{1}$ ,  $I_{2}$ ,
- )\_ Geoscience Frontiers 5, 525-36.
- 2013. 1 Gondwana Research 23, 1316 41.
- Geological Society, London 161, 33, 42.

- 200, a. 200

- Journal of Sciences **309**, 221 0. Uygur Autonomous Region. A Kar , L. 2 145 (1) , L. 2 145
- Gondwana Research 21, 246 65.

Chinese Science Bulletin **48**, 2231 5. Earin Sciences 32, 11 55.

A s). Annual Review of Earth and Planetary Sciences 14, 4,351.